S.111/4a, c

Drei Punkte liegen auf einer Gerade, wenn zwei Verbindungsvektoren (alle drei Punkte müssen vorkommen) parallel sind.

a)
$$\overrightarrow{AB} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
 und $\overrightarrow{CB} = \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}$ sind nicht kollinear, also liegen A, B und C nicht auf einer Gerade.

c)
$$\overrightarrow{AB} = \begin{pmatrix} 4 \\ 2 \\ 2 \end{pmatrix}$$
 und $\overrightarrow{CB} = \begin{pmatrix} 6 \\ 3 \\ 3 \end{pmatrix}$ sind kollinear: $2\overrightarrow{CB} = 3\overrightarrow{AB}$ also liegen A, B und C auf einer Gerade.

S.111/5a

Vier Punkte liegen in einer Ebene, wenn drei Verbindungsvektoren (alle vier Punkte müssen vorkommen) komplanar sind, wenn also die Determinante dieser Verbindungsvektoren gleich null ist (Komplanaritäts-Kriterium).

a)
$$\overrightarrow{AB} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$
, $\overrightarrow{AC} = \begin{pmatrix} 2 \\ -2 \\ -2 \end{pmatrix}$, $\overrightarrow{AD} = \begin{pmatrix} 3 \\ 3 \\ -1 \end{pmatrix}$; weil \overrightarrow{AB} und \overrightarrow{AC} kollinear sind, sind \overrightarrow{AB} , \overrightarrow{AC} und \overrightarrow{AD} komplanar: A, B, C und D liegen in einer Ebene.