

S.171/18

Fallunterscheidung:

a) a < 0 : ID = IR ;

Nullstellen: $x_1 = 0$; $x_2 = -a$;

Asymptote: $y = -\frac{1}{a}$;

b) a = 0: ID = IR; $f_0(x) = x^2$!

Nullstelle: $x_1 = x_2 = 0$;

Tiefpunkt: $x_3 = 0$; $y_3 = 0$;

kein Wendepunkt ; keine Asymptote!

c) $a = 1: \mathbb{D} = \mathbb{R} \setminus \{-1\};$

Definitionslücke in (-1;0)

Nullstelle: $x_1 = 0$!

Asymptote: y = -1;

d) $a \in \mathbb{R}^+ \setminus \{1\}$: $\mathbb{D} = \mathbb{R} \setminus \{\frac{\sqrt{a}}{a}; -\frac{\sqrt{a}}{a}\}$; Nullstellen: $x_1 = 0$; $x_2 = -\frac{1}{a}$;

Asymptoten: $y = -\frac{1}{a}$; $x = \frac{\sqrt{a}}{a}$; $x = -\frac{\sqrt{a}}{a}$;

Alle Graphen von $f_a(x)$ mit Ausnahme von $f_1(x)$ laufen durch den Punkt (-1;1) !

$$f'(x) = \frac{a^2x^2+2x+a}{(1-ax^2)^2}$$
; $f''(x) = \frac{2(a^3x^3+3ax^2+3a^2x+1)}{(1-ax^2)^3}$;

x-Werte der Extrempunkte:
$$x_3 = \frac{-1+\sqrt{1-a^3}}{a^2}$$
;
$$x_4 = \frac{-1-\sqrt{1-a^3}}{a^2}$$
;

⇒ Für a > 1 existieren keine Extrempunkte; Ortskurven der Extrempunkte:

$$y_3 = \frac{\sqrt{1-8x^3}-1}{4x}$$
; $y_4 = \frac{-\sqrt{1-8x^3}-1}{4x}$;

Die Bestimmung der Wendepunkte ist aufwendig (Cardanische Formeln). Eine Ortskurve wird deshalb nicht ermittelt.

